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Competing neural networks: Finding a strategy for the game of matching pennies

Inés Samengo and Damia´n H. Zanette
Consejo Nacional de Investigaciones Cientı´ficas y Te´cnicas, Centro Ato´mico Bariloche and Instituto Balseiro, 8400 Bariloche, Argentin

~Received 23 December 1999!

The ability of a deterministic, plastic system to learn to imitate stochastic behavior is analyzed. Two neural
networks—actually, two perceptrons—are put to play a zero-sum game one against the other. The competition,
by acting as a kind of mutually supervised learning, drives the networks to produce an approximation to the
optimal strategy, that is to say, a random signal.

PACS number~s!: 87.18.Sn, 02.50.Le, 05.45.Tp
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I. INTRODUCTION

Since the connection between disordered spin syst
and symmetric binary neural networks was drawn@1#, inten-
sive theoretical, numerical, and experimental research
been devoted to this field within physics, and in the bound
of physics with biology and information theory, among ot
ers@2,3#. From the viewpoint of the study of dynamical sy
tems, neural networks are a special kind of distributed ac
systems@4#, which in their most impressive realization—th
brain—are able to display extremely sophisticated collec
behavior. Actual models have of course much more mod
scopes but, in spite of their simplicity, they have been able
imitate some basic features of cognitive processes. Th
models have also been extended to perform specific ta
such as for instance, process control and forecasting@5#.

A basic capability of a wide class of neural-network mo
els is that of learning, i.e., the possibility of modifying th
internal architecture of the network to adapt its dynamics
an expected response. This process can take a varie
forms, to be chosen according to the aims of the mo
Pattern storing and recognition—the so-called associa
memory—is perhaps the best known@6#. Another well-
known instance is learning by generalization. In this case,
network is exposed to some input information and the out
is compared with the expected response. Errors are usu
backpropagated to modify the network dynamics throug
change in its architecture. The network thus learns from
perience. It is expected that after a certain learning trans
the network is able to produce the correct output even fr
inputs not included in the learning sample. This kind
learning can be carried on under supervision, or the sys
can be designed to learn in an unsupervised manner
means of a self-organization mechanism@2–4#.

In this paper, we explore a neural-network model of t
learning that takes place during a competitive game. Co
petitive games have recently attracted a great deal of a
tion among physicists as simple models of adaptive evo
tion and self-organization in biological, social, an
economical systems@7#. Neural networks have been de
signed and trained to play some highly complex games s
as chess and backgammon@8#. The complexity of these
games, however, does not allow a systematic analysis o
learning process or a statistical evaluation of the performa
accomplished. On the other hand, too simple games—s
as those that admit a pure optimal strategy@9#—should be
PRE 621063-651X/2000/62~3!/4049~8!/$15.00
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readily solved by a suitably designed neural network. In fa
finding a pure strategy can be associated with a maxim
tion problem.

Here, we focus the attention at an intermediate lev
choosing a competitive zero-sum game with very sim
rules but lacking a pure optimal strategy, e.g., the game
matching pennies. Two neural networks are left to repeate
play the game against each other. The successive gam
sults are used online to feed the learning mechanism of
two players. As in the case of human players, each netw
tries to guess the strategy of its opponent and, thus, com
tition becomes a kind of mutual supervision. The optim
strategy for the game of matching pennies is a purely s
chastic one. Thus, the challenge for the networks, wh
dynamics is fully deterministic, consists in approximating
close as possible a random evolution. Our analysis of
time series generated during the game shows that even s
networks with simple architectures do quite well—probab
better than any human being~not using a randomizing de
vice! @10#.

In the next section we describe in detail the game
matching pennies, and specify the architecture and learn
dynamics of the competing neural networks. Section III
devoted to the study of the model as a time-discrete dyna
cal system—a mapping—with emphasis in its phase-sp
evolution. In Sec. IV, we analyze statistical properties of t
dynamics during the game, evaluating the performance of
networks within an information-theory approach. Finally, w
discuss our results and consider some possible extensio

II. THE GAME AND THE PLAYERS

In the game of matching pennies, player I chooses am
two possible instances, say ‘‘heads’’ or ‘‘tails.’’ Player I
not knowing player I’s choice, also chooses either ‘‘head
or ‘‘tails.’’ Then, the two choices are disclosed—for e
ample, each player showing a penny—and, if they are
same, player I pays one cent to player II. If, on the contra
the choices have been different, II pays one cent to I. T
procedure is then repeated a large number of rounds, w
has for instance been defined by a previous agreemen
tween the players. In a less symmetric but very well-kno
realization of the same game, player II must guess in wh
hand has player I hidden a coin or any other small obje
The payoff rules are the same as for the game of match
pennies. Since at each round player I’s loss~or gain! equals
4049 ©2000 The American Physical Society
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4050 PRE 62INÉS SAMENGO AND DAMIÁN H. ZANETTE
player II’s gain~or loss!, this is a zero-sum game. In gam
theory, a two-player zero-sum game is said to be a ‘‘stric
competitive’’ game@9#.

As the game proceeds, we expect the two players tryin
outguess each other, keeping their own strategies secret.
to the high symmetry of the game of matching pennies, ho
ever, there is no optimal pure strategy for either player.
course, it would be a very poor strategy for any player
choose the same instance at every time step. But, moreo
any deterministic way of deciding which instance should
chosen at a given time step could be disclosed by the op
nent in the long run. On the other hand, trying to guess
opponent’s strategy could lead to an unsolvable, infinit
involved problem. As illustrated in@9#, we may picture
player I as thinking: ‘‘People usually choose heads; henc
will expect me to choose heads and choose heads him
and so I should choose tails. But perhaps II is reason
along the same line: he’ll expect me to choose tails, and
I’d better choose heads. But perhaps that is II’s reason
so . . . ’’ In this way, it becomes impossible to determine
strategy in which either player could be confident. It follow
that it is necessary for both players to introduce a mix
stochastic strategy where, at each time step, each pl
chooses an instance at random, with a certain probab
distribution. The symmetry of the present game indica
clearly that the best strategy for both players is to cho
heads or tails with equal probability. In the long run, th
ensures a zero average gain, whereas any other strateg
plies a net gain for the opponent.

Our aim here is to study, as a dynamical system, a pa
competing neural networks playing the game of match
pennies. In particular, we are interested in analyzing whe
the dynamics implies learning of an efficient strategy ‘‘on-
line,’’ i.e., as the game proceeds. Since the network dyna
ics and the learning algorithm considered in the followi
are deterministic, it cannot be expected that the netwo
will find the optimal~stochastic! strategy. However, it could
be possible that the networks were able to approximate i
means of a complex deterministic dynamics over a su
ciently long period. The basic idea in the learning proces
that the playing strategy of each network should eme
from trying to guess the opponent’s strategy. This is in f
the mechanism expected to drive the game between hu
players: though a general analysis of the game shows tha
best way of playing is at random, each player tries to o
guess the other assuming a deterministic strategy, at lea
the short term. The way of playing derives therefore from
~somewhat paradoxical! cooperative mechanism during th
contest, where each player ‘‘supervises’’ the learning of
other.

As for the architecture of each neural network, we ta
the simplest model, namely, the perceptron, introduced
@11,12# and reviewed in standard books on neural netwo
~see, for example,@2,3,13#!. It consists of a collection ofN
inputs si(t) and of N synaptic weightswi(t) ( i 51, . . . ,N)
that define, at each time step, a single outputs(t) as

s~ t !5SF(
i

wi~ t !si~ t !G . ~1!

Here S is a step-shaped function, which we choose to
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S(x)5sgn(x). Thus, s561. We associate each of thes
two possible values of the output with the instance chosen
the network at a given time step, say,s(t)511 for heads
ands(t)521 for tails.

We consider now two of these perceptrons~see Fig. 1!,
both with N inputs. At each time step, the output of one
the perceptrons should be determined by the outputs of
other at the precedent steps. Indeed, this is the informa
available to each player on the strategy of the opponent.
associate therefore the inputssi

1 of perceptron I with the
previous outputss2 of perceptron II and vice versa, as

si
1,2~ t !5s2,1~ t2 i !, ~2!

i 51, . . . ,N. Time steps are of unitary length.
Learning is a consequence of the comparison of the o

puts of the two perceptrons at each time. If the outputs
identical, perceptron II wins, and the synaptic weightswi

1 of
perceptron I are modified to produce a better prediction
the opponent’s output at the next round. Meanwhile, the s
aptic weightswi

2 of perceptron II can be left invariant, a
they have led this perceptron to win the round. If, on t
other hand, the outputs have been different,wi

2 are modified
andwi

1 are maintained. A suitable algorithm for implemen
ing this mechanism is the standard perceptron learning
@2,3,13#, which in our case implies

wi
1~ t11!5wi

1~ t !2hQ@s1~ t !s2~ t !#si
1~ t !s2~ t ! ~3!

and

wi
2~ t11!5wi

2~ t !1hQ@2s1~ t !s2~ t !#s1~ t !si
2~ t !, ~4!

with i 51, . . . ,N andh5(11N)21. The Heaviside function
Q—whereQ(x)51 for x>0 andQ(x)50 for x,0—acts
here as a mask, by selecting the perceptron whose syn
weights are to be modified.

Suppose that the successive outputs of perceptron I
replaced by a periodic series of61 @14#. From the viewpoint
of perceptron II, this is interpreted as the opponent’s cho
of a trivial strategy. As a matter of fact, the perceptron co
vergence theorem@2,11,15# ensures that ifN is large enough,
i.e., if perceptron II’s memory is sufficiently long range, th
learning procedure stops and, from then on, perceptro
wins all rounds. When the period of the output series
perceptron I is lower thanN, in fact, it can be straightfor-
wardly shown that there is at least one set of synap
weights wi

2 that make perceptron II able to win at eve
round. The number of steps needed to compute these sy
tic weights is of orderN3 @13#, and can be tested numerical

FIG. 1. Two competing perceptrons.
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in our system. It is therefore not expected that when t
large perceptrons are left to play freely one of them w
adopt a short-period strategy.

III. THE SYSTEM AS A MAPPING:
PHASE-SPACE DYNAMICS

Equations~1!–~4! define the dynamics of our system
They can be resumed in a 4N-dimensional recursive map
ping for the perceptron inputs and the synaptic weights o
The recursion equations are

s1
1,2~ t11!5SF(

i
wi

2,1~ t !si
2,1~ t !G ,

si
1,2~ t11!5si 21

1,2 ~ t ! ~ i 52, . . . ,N!,

wi
1~ t11!5wi

1~ t !2hQ@s1
1~ t11!s1

2~ t11!#s1
1~ t11!si

1~ t !

~ i 51, . . . ,N!, ~5!

wi
2~ t11!5wi

2~ t !1hQ@2s1
1~ t11!s1

2~ t11!#

3s1
2~ t11!si

2~ t ! ~ i 51, . . . ,N!.

The phase space corresponding to this mapping is disc
In fact, the inputssi

1,2 can adopt the two values61 only.
Moreover,wi

1,2 can have real values but they vary on a d
crete set, since according to Eqs.~3! and~4! the variation of
the synaptic weights has always the same modulus,uDw1,2u
5h. Once the initial synaptic weights have been fixed,
discrete set of their possible future values is completely
termined.

During the evolution, the synaptic weights can in pri
ciple run over an infinite set. However, though the synap
weights are not expected to converge to fixed values bu
continuously evolve as the game proceeds, it is reasonab
conjecture that they will not perform arbitrarily long excu
sions in phase space. To prove this conjecture, let us
sider in detail the evolution of the synaptic weights, given
the two last equations in Eq.~5! or, equivalently, by Eqs.~3!
and~4!. These two equations can be written, respectively

wi
1~ t11!5wi

1~ t !2hs1~ t !si
1~ t ! if s1~ t !5s2~ t !,

~6!
wi

1~ t11!5wi
1~ t ! if s1~ t !52s2~ t !,

and

wi
2~ t11!5wi

2~ t !2hs2~ t !si
2~ t ! if s1~ t !52s2~ t !,

~7!
wi

2~ t11!5wi
2~ t ! if s1~ t !5s2~ t !.

We now select one of the perceptrons and restrict the dyn
ics of its synaptic weights to the time steps where they
effectively modified, by simply ignoring the steps where
changes occur. The evolution equations can be written
vectorial form as

w~ t11!5w~ t !2hS@w~ t !•s~ t !#s~ t !, ~8!

where the components ofw and s are the synaptic weight
and the inputs of the selected perceptron, respectively.
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recall thatS(x) is the sign function. The scalar productw
•s is defined in the usual way, cf. Eq.~1!. Note that Eq.~8!
holds for both perceptrons.

Let us now consider for a moment that, in Eq.~8!, the
vectors is independent of time. Under this assumption it
possible to reduce the system~8! to two equations for the
quantitiesp(t)5s•w(t) andq(t)5uw(t)u2, namely,

p~ t11!5p~ t !2~12h!S@p~ t !#,
~9!

q~ t11!5q~ t !22hup~ t !u1h~12h!.

It can be easily seen from the first equation thatp(t) con-
verges, after a certain transient, to a period-2 cycle. The
values ofp on this cycle,p1 and p2, satisfy the relationp2
5p1211h. They depend on the initial conditions, but a
always restricted to the intervals 0,p1,12h and h21
,p2,0. Accordingly,q(t) oscillates between two valuesq1
and q2, defined by the initial conditions and related byq2
5q122hp11h(12h). After the transient, the modulus o
the vectorw is therefore restricted to vary within the interv
@2W,W# with W5max$Aq1,Aq2%.

In summary, for fixeds the evolution given by Eq.~8!
drives the synaptic weights toward a bounded domain wh
size depends on the initial condition but remains always
nite. We stress that this is valid for any choice ofs. Coming
now back to the case of variable inputs, we note that
number of possible values fors(t) is also finite, and equals
2N. Equation~8! can therefore be thought of as the applic
tion, at each time step, of one of the 2N transformations just
studied. Since each of them contracts the space of syna
weights toward a bounded region, after the transientw(t)
will always evolve within the union of all those region
Disregarding transient effects, the space of synaptic weig
is then finite. Hence, the accessible phase space of map
~5! is finite and discrete.

As an illustration of the evolution of synaptic weights, w
show in Fig. 2 the time dependence ofuwu for both percep-
trons. The initial weights were uniformly chosen at rando

FIG. 2. Modulus of the vector of synaptic weights for two com
peting perceptrons withN510 inputs, as a function of time. Ful
and dotted curves correspond touw1u and uw2u, respectively. Full
and dashed horizontal lines correspond to the analytical approx
tion for the average value ofuwu for N510 andN→`, respectively.
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4052 PRE 62INÉS SAMENGO AND DAMIÁN H. ZANETTE
in (20.2,0.2) andN510. The horizontal lines in the plo
stand for the theoretical values of the temporal average
uwu for N510 ~full line! andN→` ~dashed line!. These can
be calculated by taking the square of Eq.~8!, namely,

q~ t11!5q~ t !22hAq~ t !uŵ~ t !•s~ t !u1h~12h!, ~10!

with ŵ5w/uwu. This recursion equation is analogous to t
second of Eqs.~9!. It can be seen that, for sufficiently larg
N, the average ofuŵ(t)•s(t)u over time—or, equivalently,
over random realizations of the vectorsŵ and s—becomes
independent ofN and approaches the limit̂uŵ•su&5A2/p
'0.798. From Eq.~10!, this implies that for largeN:

^uwu&5^Aq&5Ap

8
'0.627, ~11!

cf. @16#. A better approximation for finiteN is ^uwu&
5ApN(N21)/8(N11)2. For N510 this gives ^uwu&
'0.540, which is the value plotted in Fig. 2. The avera
value of uwu provides an estimate for the size of the doma
of phase space where the synaptic weights evolve after t
sients have elapsed. Note that the fact that^uwu& approaches
a constant for largeN implies that, in average, the synapt
weights arewi

1,2;1/AN.
The main byproduct of the fact that, for our system, ph

space is finite and discrete is that, after the transient
elapsed, the orbits are periodic. It becomes therefore rele
to determine the length of the periods. In fact, if it result
that orbits get typically trapped in short cycles, the probl
would at once get uninteresting. We have measured the
riods numerically, carrying out extensive series of 100–10
realizations 6.43105 steps long, withN ranging from 2 to
10. Initial conditions were chosen at random, with the s
aptic weights uniformly distributed in (20.2,0.2). The sys-
tem has always been found to reach a periodic orbit foN
,7. For a fixed value ofN, periods show typically a broad
distribution. The average period has been found to incre
exponentially withN, as shown in Fig. 3. ForN>7, not all
the realizations displayed periodicity, indicating the occ

FIG. 3. Average periods of the orbits of mapping~5!, for differ-
ent values ofN. Notice the logarithmic scale in the vertical axis.
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rence of periods longer than our numerical realizatio
Some test realizations forN510 suggest that periods coul
grow beyond 108 steps.

The system thus seems to have two well-differentia
time scales. On the one hand, there should be a time s
associated with learning, of orderN3. As stated above, in the
case of a single perceptron being trained to predict a perio
series this is in fact the number of steps needed to com
all the synaptic weights. For the competing perceptrons,
length of the initial transient during which the system e
plores phase space to find the bounded region where it
evolve later, should be of the same order. On the other ha
we have a much longer ‘‘recursion’’ time scale, of orderAN

(A'5.05, Fig. 3!, associated with the periods of orbits insid
that region. Though the two-perceptron dynamics is dissi
tive, it resembles in this aspect that of Hamiltonian syste
with many degrees of freedom. Indeed, according
Poincare´’s theorem@17#, Hamiltonian systems are recurre
and, at sufficiently long times, they visit an arbitrarily sma
neighborhood of their initial state. However, in a statistic
description of their evolution, it is possible to identify muc
shorter time scales, related to the relaxation of fast variab
@18#.

At the level of recursion time scales, the dynamics of t
two-perceptron system is in a sense trivial. Orbits are in f
periodic at long times, and the results of successive ga
rounds will be repeatedad infinitum. When, during a whole
period, one of the perceptrons is able to gain even the sm
est advantage over the other, this small difference will c
tinuously accumulate, producing, in the long run, an ar
trarily large bias in the result of the game. As in the case
large Hamiltonian systems, however, recursion times are
beyond the reach of our~numerical! experience as the size o
the perceptrons increases. Therefore, most of the realiza
of the two-perceptron game analyzed below will always
restricted to the interval period, previous to the appearanc
periodicity. In this stage, the relevant time scale is the lea
ing time, of orderN3. Within such times we expect the sys
tem to reach a kind of stationary playing regime where, if t
learning algorithm is efficient, the outputs of the two perce
trons should imitate a random series of61. In the next sec-
tion, we study the statistical properties of these output ser

IV. STATISTICAL ANALYSIS OF THE GAME DYNAMICS

Random properties in time series can be characterized
variety of ways. In our case, where the relevant series
arrays of61, a suitable measure of time correlations is
informationlike quantity@19#. As shown below, this quantity
can be used to characterize the correlation between diffe
series and, consequently, the correlation of a series with
self. It has the advantage of being additive, and is there
appropriate when comparing numerical results. We thus
gin by defining the mutual information of two time series

Consider two dichotomic stochastic processesS1 and S2
that, at each time step, can adopt the values61 with certain
probability distributions. LetP(S1 ,S2) be the joint probabil-
ity for the processes, andP1(S1)5(S2

P(S1 ,S2) and

P2(S2)5(S1
P(S1 ,S2) their individual~marginal@20#! prob-

abilities. A measure of the correlation between the two p
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cesses is given by themutual information@19#, defined as

I 5 (
S1561

(
S2561

P~S1 ,S2!log2F P~S1 ,S2!

P1~S1!P2~S2!G . ~12!

It can be shown thatI>0. For two uncorrelated processe
where P(S1 ,S2)5P1(S1)P2(S2), the mutual information
reaches its minimum,I 50. The maximal value of the mutua
information is obtained forS15S2 and forS152S2 , where
I 52P1(11)log2P1(11)
2P1(21)log2P1(21). In particular, if P1(11)5P1(21)
51/2, we getI 51.

The definition of mutual information, Eq.~12!, suggests
immediately a way of introducing a measure of autocorre
tion for a single dichotomic stochastic processS at different
times. In fact, associatingS1(t) and S2(t) with S(t) and
S(t1t), respectively, we can introduce the~two-time! auto-
informationas

I ~ t,t!5(
S(t)

(
S(t1t)

P@S~ t !,S~ t1t!#

3 log2H P@S~ t !,S~ t1t!#

P@S~ t !#P@S~ t1t!#J . ~13!

If S is a stationary stochastic process@20#, the autoinforma-
tion depends on the time intervalt only, I[I (t). If the
successive values ofS are uncorrelated we haveI 50,
whereas for t50 we get the maximal valueI (t,0)
52P(11)log2P(11)2P(21)log2P(21).

In practice, for a finite realization of the stochastic pr
cesses, the probabilities involved in Eqs.~12! and ~13! are
approximated by the corresponding frequencies, which
be computed by simple counting of the relevant occurren
This approximation implies that in the case of uncorrela
processes the information calculated from Eqs.~12! and~13!
can differ from zero, due to fluctuations in the finite samp
under consideration. It can be shown that for aT-step real-
ization of uncorrelated stochastic processes where the
vidual probabilities of the two possible values61 are equal,
P(11)5P(21)51/2, the probability distribution for this
apparent information to have a valueI is

pT~ I !5AT ln 2

pI
exp~2TI ln 2!, ~14!

for small I. The resulting mean value of the apparent info
mation is

^I &5E
0

`

IpT~ I !dI5
1

2T ln 2
, ~15!

which decreases asT21 as the series size grows. For largeT,
pT(I )→d(I ), as expected. Thus, the distribution of valu
for the information computed from finite samples of sizeT
and its average are to be respectively compared withpT(I )
and ^I & in order to detect the presence of correlations.

We now consider two playing perceptrons withN510,
and apply the definition of autoinformation~13! to any of the
two series of outputs,S(t)[s1,2(t). The outputs are re
corded after the first 104 steps have elapsed, in order to avo
-

-

n
s.
d

i-

-

nonstationary transient effects during the first stage of lea
ing ~of orderN3 @13#!. The recorded series areT5104 steps
long, and the results presented below correspond to aver
over 53104 realizations.

Figure 4 shows the measured average autoinformatio
a function oft. The horizontal line corresponds to the ave
age autoinformation~15! expected for an uncorrelated seri
with the present value ofT, i.e., ^I &'7.231025. We first
note that, except fort52 and 4, the autoinformation of th
output signal is always less than twice the value of^I & for a
random series. This implies that each perceptron exhibi
quite good performance in generating a random seque
There are however, certain regular patterns that sugges
presence of small but nontrivial correlations. Indeed, the
erage autoinformation oscillates strongly for smallt, reach-
ing high levels for even values oft and dropping abruptly
for odd values oft. On average, these oscillations decrea
as t grows, but they reappear neart520 and 30. Realiza-
tions for other values ofN indicate that the oscillation am
plitude decreases asN grows, and that the ‘‘bursts’’ at which
oscillations reappear occur whent approaches integer mul
tiples ofN. The amplitude of these bursts decreases for lar
multiples.

A more detailed description of the appearance of corre
tions in the output signals of the perceptrons is provided
the distribution of autoinformation values. Figure 5 displa
the normalized frequencies of autoinformation values res
ing from our sets of 53104 realizations of 104-step series for
various values oft. The curve corresponds topT(I ) for an
uncorrelated series, Eq.~14!. For t51 practically no corre-
lations are detected by the autoinformation. We note onl
slight overpopulation for largeI. On the other hand, fort
52, which corresponds to the largest deviation in the av
age autoinformation~see Fig. 4!, the distribution is qualita-
tively different. It exhibits a maximum at a rather large val
of the autoinformation (I'231023) and, except for small
values ofI, it is systematically much larger than the distr
bution expected for a random series. Att510, the distribu-
tion has a profile similar to that observed fort51, but the
overpopulation at the tail is noticeably larger. This overpop
lation grows further during the bursts where oscillations

FIG. 4. Average autoinformation for the output of one of t
competing perceptrons as a function of the time intervalt, mea-
sured in series of 104 steps. Both perceptrons have 10 inputs. T
horizontal line corresponds to the average autoinformation expe
for an uncorrelated series of the same length.
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FIG. 5. Normalized frequencies of autoinfo
mation values obtained from 53104 series of 104

steps, for several values of the time intervalt.
Both perceptrons have 10 inputs. Curves cor
spond to the distribution expected for uncorr
lated series of the same length, Eq.~14!.
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appear. The plot fort520 shows the distribution at the firs
of these bursts. In contrast, for the intermediate value
which the average autoinformation plotted in Fig. 4 reac
the information of a random series, the corresponding dis
bution cannot be distinguished frompT(I ).

We have found that the oscillations of the average au
information shown in Fig. 4 are essentially a byproduct
the internal dynamics of each perceptron. In fact, if inste
of using the opponent’s output, a perceptron is fed with
random series of61, the autoinformation of its own outpu
oscillates as well. A detailed analysis of the output ser
reveals that, for event, the products(t)s(t1t) is more
frequently negative than positive. For instance, fort52, the
respective frequencies are about 0.52 and 0.48. We rema
passing that this small relative difference—of the order o
few percent—produces an increment larger than one orde
magnitude in the autoinformation, which evidences the s
sibility of this quantity as a measure of correlations. F
larger values oft, the difference is even smaller. On th
other hand, for oddt no differences are detected.

In order to trace the origin of the correlations observed
event, a careful analysis of the learning algorithm has to
carried out. We consider first the case oft52. After two
time steps, the vector of synaptic weights can be written

w~ t12!5w~ t !2hu~ t !s~ t !s~ t !

2hu~ t11!s~ t11!s~ t11!, ~16!

whereu(t)51 if the weights have been modified at timet,
andu(t)50 otherwise@cf. Eq. ~8!#. When the perceptron is
fed with a random signal,u(t) can be seen as a stochas
process with equal probabilities for its two values. The pro
uct of the outputs two steps apart is

s~ t !s~ t12!5s~ t !S@w~ t12!•s~ t12!#

5S@s~ t !w~ t !•s~ t12!2hu~ t !s~ t !•s~ t12!

2hu~ t11!s~ t !s~ t11!s~ t11!•s~ t12!#.

~17!
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Numerical measurements of the right-hand side~r.h.s.! of
this equation show that the first two terms in the argumen
the sign function have zero mean and do not produce a
contribution to the sign ofs(t)s(t12). The only contribu-
tion to the correlation is originated in the third term. T
verify this fact analytically, we first note that

w~ t11!5w~ t !@11O~1/AN!#,
~18!

s~ t11!•s~ t12!5s~ t !•s~ t11!@11O~1/AN!#.

The first of these identities results from the fact that,
shown in the previous section,wi;1/AN whereas, according
to Eq. ~5!, its variation in one time step is given byh
;1/N. The second identity can be readily proven from t
evolution of si(t), also given in Eq.~5!. Consequently, ne-
glecting terms of order 1/AN, the sign of the product
s(t)s(t11)s(t11)•s(t12) can be approximated as fo
lows:

S@s~ t !s~ t11!s~ t11!•s~ t12!#

'S$@w~ t !•s~ t !#@w~ t !•s~ t11!#@s~ t !•s~ t11!#%. ~19!

Note that the argument of the sign function in the r.h.s.
this equation is likely to be positive, since it is given by th
product of the projections of two vectors,s(t) ands(t11),
along the direction ofw(t) times their mutual scalar produc
More explicitly,

@w~ t !•s~ t !#@w~ t !•s~ t11!#@s~ t !•s~ t11!#

5sw
2 ~ t !sw

2 ~ t11!1sw~ t !sw~ t11!s8~ t !•s8~ t11!, ~20!

with sw5w•s ands85s2swŵ. The first term in the r.h.s. o
this equation is always positive, whereas the second term
not expected to have a definite sign on average. Note m
over that the first term is of the order of unity, whereas t
second term is of orderAN. This implies that the relative
importance of the positive contribution decreases asN
grows. Coming now back to Eq.~17! through Eq.~19! it is
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clear that, when the synaptic weights are modified at timt
11 @i.e., u(t11)51#, there is on average a negative cont
bution tos(t)s(t12), in agreement with numerical result
According to the above analysis, this correlation should
come less important asN grows. In fact, the autoinformation
peak att52 is observed to decrease in the simulations.

For arbitrary t, the analysis can be repeatedmutatis
mutandis. We have

s~ t !s~ t1t!5SFs~ t !w~ t !•s~ t1t!2h (
t850

t21

u~ t1t8!s~ t !

3s~ t1t8!s~ t1t8!•s~ t1t!G . ~21!

Taking now into account that

w~ t1t8!5w~ t !@11O~At8/N!#,
~22!

s~ t1t8!•s~ t1t!5s~ t !•s~ t1t2t8!@11O~At8/N!#,

the sign of the products(t)s(t1t8)s(t1t8)•s(t1t) in the
sum of Eq.~21! can be approximately written as

S@s~ t !s~ t1t8!s~ t1t8!•s~ t1t!#

'S$@w~ t !•s~ t !#@w~ t !•s~ t1t8!#@s~ t !•s~ t1t2t8!#%.

~23!

The argument of the sign function in the r.h.s. of this eq
tion has a positive contribution of the same type as in
~19! whent1t85t1t2t8, i.e. for t52t8. Therefore, in the
realizations whereu(t1t/2)51, a negative contribution to
s(t)s(t1t) appears. This of course requirest to be even.
Since other contributions have no definite sign, peaks in
average autoinformation are expected for even values ot,
as observed. Note moreover that the orderAt8/N of the
terms neglected in Eq.~23! increases witht8, i.e., with t.
This explains why the height of the peaks decreases at
grows.

Along the same line of analysis, it is possible to expla
the bursts where the autoinformation peaks reappear. N
however, it is necessary to take into account both perc
trons. In fact, the output of a single perceptron fed with
random signal does not exhibit such bursts. They are rath
consequence of the interaction between the two percept
during the game. The analysis, whose details we omit h
shows that bursts are originated by a kind of bouncing ef
in the transmission of information between the oppone
This bouncing effect is attenuated ast grows, and decrease
for larger perceptrons, as observed in the numerical sim
tions.

In summary, the statistical analysis of perceptron outp
at time scales larger than the learning stage but much sh
than the recursion times, reveals that the perceptrons
quite efficient players of the game of matching pennies. E
with a relatively small number of inputs, i.e., with a rel
tively short-range memory, their dynamics is able to gene
quasirandom mixed strategies. We recall that this beha
originates spontaneously from the deterministic learning
-
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ct
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gorithm with which each player is endowed to outguess
opponent. Remaining correlations, which could in princip
be exploited by a ‘‘smarter’’ opponent to obtain a net ga
during the game, are small overall and can in fact be redu
systematically by increasing the memory range.

V. DISCUSSION

We have here considered an example of a fully determ
istic learning system and explored its ability to behave s
chastically. Concretely, we have coupled two determinis
perceptrons in such a way that they imitate two players of
game of matching pennies, trying to outguess each ot
Since the optimal strategy for this game is a purely stocha
sequence of outputs, the learning process should lead
network dynamics to approach a random signal.

In the first place, we have observed that a perceptron p
ducing a periodic signal can always be defeated by a su
ciently ‘‘smart’’ opponent, i.e., by a perceptron with a suf
ciently large number of neurons. This kind of ‘‘dummy
player provides in fact a linearly separable set of examp
for the learning of its opponent@2#. The learning task is thus
to find a plane in the input space that separates the in
states into two groups, namely, those whose expected
puts are either11 or 21. On the other hand, when the tw
competing perceptrons are allowed to learn, the situatio
pretty much different. Since both networks are looking f
the best performance, they both change their strategies on
and, thus, they may well provide not only a nonlinearly se
rable set of examples, but also an inconsistent one. That
say, at two different times any perceptron can give two d
ferent outputs from the same input state. This is the rea
why the learning process does, in fact, not converge,
why the system is expected to spontaneously develop
chasticlike dynamics.

Despite the fact that the overall dynamics is in the lo
run periodic and, consequently, the characteristic random
evolution of chaotic systems cannot be found here@21#, the
perceptrons do learn to behave quasistochastically over m
erately long time intervals. An information-theoretical stat
tical analysis of the output signals shows slight time corre
tions, to be ascribed to the deterministic coupling betwe
the learning mechanism and the outputs themselves, w
act as the inputs of the respective opponents. The effec
these correlations is observed to decrease gradually as
number of neurons in each perceptron grows. Two seemin
paradoxical aspects of this learning process deserve to
pointed out, because of their suggestive similarity with lea
ing in humans~or other animals! entrained in a systemati
activity such as a repetitive competition game. In the fi
place, the mutual search for regularity in the opponent’s
havior leads the whole system to develop highly irregu
evolution over long times, which can hardly be distinguish
from purely random dynamics. In the second place, we st
that competition can here be interpreted as a form of mu
ally supervised learning and, thus, results in a kind of c
laboration between the opponents.

Some natural extensions of the present model are w
considering for future work. An important question to b
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addressed regards the case where the entangled perce
are not equal in size, i.e., they have different numbers
neurons. In such a situation, in fact, the above quoted co
spondence of competition and collaboration could fail
hold. Preliminary results along this line~not presented in this
paper! suggest however that the advantage of a larger
ceptron is relatively small. Only very small networks (N
;2) are systematically defeated by larger opponents, as
typically fall in short-period cyclic orbits. Another importan
extension, which deserves separate consideration, consis
adding noise to the deterministic dynamics studied here
fact, errors in information transmission and in memory
trieval are extremely relevant factors in the emergence
strategies as a game proceeds@22#.

The perceptronlike structure of our networks is proba
the simplest instance among a large class of possible a
,

an
ar
rons
f

e-

r-

ey

of
In
-
f

y
hi-

tectures. Fully connected networks and multilayer structu
have been shown to exhibit very high performance in lea
ing tasks@2,3,19#. It would therefore be interesting to stud
how these more complex networks respond to mutually
pervised learning. Finally, from the viewpoint of gam
theory, it would be relevant to analyze the dynamics of co
peting networks engaged in other games, especially, w
ordinary optimization procedures do not lead to the optim
playing strategy. We mention, in particular, the iterated pr
oner’s dilemma@22#, which is attracting a great deal of a
tention as a paradigm of competition-collaboration interpl
and multiplayer minority games, recently studied by mea
of ensembles of globally coupled perceptrons@23#. Compet-
ing neural networks could contribute to a better understa
ing of the complex learning mechanisms involved in su
kinds of social interactions.
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