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Competing neural networks: Finding a strategy for the game of matching pennies
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The ability of a deterministic, plastic system to learn to imitate stochastic behavior is analyzed. Two neural
networks—actually, two perceptrons—are put to play a zero-sum game one against the other. The competition,
by acting as a kind of mutually supervised learning, drives the networks to produce an approximation to the
optimal strategy, that is to say, a random signal.

PACS numbeps): 87.18.Sn, 02.50.Le, 05.45.Tp

[. INTRODUCTION readily solved by a suitably designed neural network. In fact,
finding a pure strategy can be associated with a maximiza-

Since the connection between disordered spin systention problem.
and symmetric binary neural networks was drg/ inten- Here, we focus the attention at an intermediate level,
sive theoretical, numerical, and experimental research hag00sing a competitive zero-sum game with very simple
been devoted to this field within physics, and in the boundaryulés but lacking a pure optimal strategy, e.g., the game of
of physics with biology and information theory, among oth- Matching pennies. Two neural networks are left to repeatedly
ers[2,3]. From the viewpoint of the study of dynamical sys- Play the game against each other. The successive game re-
tems, neural networks are a special kind of distributed activéults are used online to feed the learning mechanism of the
systemg4], which in their most impressive realization—the tWo players. As in the case of human players, each network
brain—are able to display extremely sophisticated collectivdries to guess the strategy of its opponent and, thus, compe-
behavior. Actual models have of course much more modedition becomes a kind of mutual supervision. The optimal
scopes but, in spite of their simplicity, they have been able t¢trategy for the game of matching pennies is a purely sto-
imitate some basic features of cognitive processes. Theddastic one. Thus, the challenge for the networks, whose
models have also been extended to perform specific taskdynamics is fully deterministic, consists in approximating as
such as for instance, process control and forecaéﬁ]‘]g (?Iose aS. pOSSible a I‘andpm evolution. Our analySiS of the

A basic capability of a wide class of neural-network mod-time series generated during the game shows that even small
els is that of learning, i.e., the possibility of modifying the Networks with simple architectures do quite well—probably
internal architecture of the network to adapt its dynamics tdPetter than any human beir{got using a randomizing de-
an expected response. This process can take a variety ¥ice) [10].
forms, to be chosen according to the aims of the model. N the next section we describe in detail the game of
Pattern storing and recognition—the so-called associativé'atching pennies, and specify the architecture and learning
memory—is perhaps the best know6]. Another well- ~dynamics of the competing neural networks. Section Il is
known instance is learning by generalization. In this case, théevoted to the study of the model as a time-discrete dynami-
network is exposed to some input information and the outpu¢al system—a mapping—with emphasis in its phase-space
iS Compared W|th the expected response_ Errors are usua' olution. In Sec. IV, we analyze statistical pI’OpeI’tieS of the
backpropagated to modify the network dynamics through &lynamics during the game, evaluating the performance of the
change in its architecture. The network thus learns from exfetworks within an information-theory approach. Finally, we
perience. It is expected that after a certain learning transierfliscuss our results and consider some possible extensions.
the network is able to produce the correct output even from
inputs not included in the learning sample. This kind of
learning can be carried on under supervision, or the system
can be designed to learn in an unsupervised manner, by In the game of matching pennies, player | chooses among
means of a self-organization mechanig2a-4]. two possible instances, say “heads” or “tails.” Player II,

In this paper, we explore a neural-network model of thenot knowing player I's choice, also chooses either “heads”
learning that takes place during a competitive game. Comer “tails.” Then, the two choices are disclosed—for ex-
petitive games have recently attracted a great deal of attemmple, each player showing a penny—and, if they are the
tion among physicists as simple models of adaptive evolusame, player | pays one cent to player Il. If, on the contrary,
tion and self-organization in biological, social, and the choices have been different, Il pays one cent to I. The
economical system$7]. Neural networks have been de- procedure is then repeated a large number of rounds, which
signed and trained to play some highly complex games suchas for instance been defined by a previous agreement be-
as chess and backgamm@8]. The complexity of these tween the players. In a less symmetric but very well-known
games, however, does not allow a systematic analysis of thealization of the same game, player Il must guess in which
learning process or a statistical evaluation of the performanckand has player | hidden a coin or any other small object.
accomplished. On the other hand, too simple games—suchhe payoff rules are the same as for the game of matching
as those that admit a pure optimal strat¢g§}—should be pennies. Since at each round player I's Ié@sgain equals

Il. THE GAME AND THE PLAYERS
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player II's gain(or los9, this is a zero-sum game. In game
theory, a two-player zero-sum game is said to be a “strictly
competitive” game/9].

As the game proceeds, we expect the two players trying to
outguess each other, keeping their own strategies secret. Du

S\

to the high symmetry of the game of matching pennies, how- II w3
ever, there is no optimal pure strategy for either player. Of > ,
course, it would be a very poor strategy for any player to wN SN

choose the same instance at every time step. But, moreover,
any deterministic way of deciding which instance should be FIG. 1. Two competing perceptrons.
chosen at a given time step could be disclosed by the oppo-

nent in the long run. On the other hand, trying to guess the ) —sgn). Thus, o==+1. We associate each of these
opponent's strategy could lead to an unsolvable, infinitelyo possible values of the output with the instance chosen by
involved problem. As illustrated irf9], we may picture  the network at a given time step, say(t)=+1 for heads
player I as thinking: “People usually choose heads; hence I}, o(t)=—1 for tails.

will expect me to choose heads and choose heads himself, \we consider now two of these perceptrdsse Fig. 1,

and so | should choose tails. But perhaps Il is reasoning with N inputs. At each time step, the output of one of
along the same line: he'll expect me to choose tails, and Sghe perceptrons should be determined by the outputs of the
'd better choose heads. But perhaps that is II's reasoningher at the precedent steps. Indeed, this is the information
so..." In this way, it becomes impossible to determine aayailaple to each player on the strategy of the opponent. We
strategy in which either player could be confident. It follows ;cociate therefore the inpm;é of perceptron | with the

that it is necessary for both players to introduce a m'xeckrevious outputsr? of perceptron Il and vice versa, as
stochastic strategy where, at each time step, each player

chooses an instance at random, with a certain probability stAt) = o2 t—i), ®)
distribution. The symmetry of the present game indicates
clearly that the best strategy for both players is to choosg=1, ... N. Time steps are of unitary length.
heads or tails with equal probability. In the long run, this | earning is a consequence of the comparison of the out-
ensures a zero average gain, whereas any other strategy iuts of the two perceptrons at each time. If the outputs are
plies a net gain for the opponent. _ ~identical, perceptron Il wins, and the synaptic weighfsof

Our aim here is to study, as a dynamical system, a pair Oherceptron | are modified to produce a better prediction of
competing neural networks playing the game of matchinghe opponent’s output at the next round. Meanwhile, the syn-
pennies. In particular, we are interested in analyzing Whetheglptic weightsw? of perceptron Il can be left invariant, as
the dynamics implies learning of an efficient strategyn™  pay have led this perceptron to win the round. If, on the

!ine,” .e., as the game propeeds. Since the_network dyn.am()ther hand, the outputs have been differevft,are modified
ics and the learning algorithm considered in the foIIowmgandw_l are maintained. A suitable algorithm for implement-
, .

are deterministic, it cannot be expected that the networks hi hanism is th dard | : |
will find the optimal (stochastit strategy. However, it could Ing this mechanism s the standard perceptron learning rule
be possible that the networks were able to approximate it b§2’3’13’ which in our case implies

means of a complex deterministic dynamics over a suffi-
ciently long period. The basic idea in the learning process is
that the playing strategy of each network should emerg
from trying to guess the opponent’s strategy. This is in fact
the mechanism expected to drive the game between human W-2(t+l)=W-2(t)+ 77@[_Ul(t)a.Z(t)]o_l(t)S_Z(t) (4)
players: though a general analysis of the game shows thatthe ! e

best way of playing is at random, each player tries to outyith j=1,... N and »=(1+N) 1. The Heaviside function
guess the other assuming a deterministic strategy, at least, @‘—Where(@(x):l for x=0 and®(x)=0 for x<0—acts

the short term. The way of playing derives therefore from &here as a mask, by selecting the perceptron whose synaptic
(somewhat paradoxicakooperative mechanism during the weights are to be modified.

contest, where each player “supervises” the learning of the Suppose that the successive outputs of perceptron | are
other. , replaced by a periodic series ofl [14]. From the viewpoint
As for the architecture of each neural network, we takeqt nerceptron Il this is interpreted as the opponent’s choice
the simplest model, namely, the perceptron, introduced iRy 5 trivial strategy. As a matter of fact, the perceptron con-
[11,12 and reviewed in standard _books on neura_ll network§,ergerlce theoreff2,11,15 ensures that i is large enough,
(see, for example},2,3,13). It consists of a collection oN & "if nerceptron II's memory is sufficiently long range, the
inputs s;(t) and of N synaptic weightswi(t) (i=1,...N)  |eaming procedure stops and, from then on, perceptron II
that define, at each time step, a single ouip(t) as wins all rounds. When the period of the output series of
perceptron | is lower thafN, in fact, it can be straightfor-
wardly shown that there is at least one set of synaptic
: () ; 2 :
weights wi that make perceptron Il able to win at every
round. The number of steps needed to compute these synap-
Here S is a step-shaped function, which we choose to bdic weights is of ordeN® [13], and can be tested numerically

wi(t+1)=wi(t)— 70[a (1) o2()]sH (D)) (3

> wi(Dsi(t)

o(t)=S
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in our system. It is therefore not expected that when two 09
large perceptrons are left to play freely one of them will I

adopt a short-period strategy. 08

0.7
Ill. THE SYSTEM AS A MAPPING: :,:'
PHASE-SPACE DYNAMICS 064
. ) . Iwl
Equations(1)—(4) define the dynamics of our system. Wos
They can be resumed in aNddimensional recursive map- 0.4
ping for the perceptron inputs and the synaptic weights only.
The recursion equations are 0.3
1.2 2,101\ &2 02 T w0 0 a0
stAt+1)=9 >, w2it)s?Yt) |, 0 100 200 300 400 500
: time
sil’z(t +1)= Sil;zl(t) (i=2,...N), FIG. 2. Modulus of the vector of synaptic weights for two com-
peting perceptrons wittN=10 inputs, as a function of time. Full
Wil(t—l— l)=Wi1('[)— n@[si(H— 1)s§(t+ 1)]8%('[4— l)sil(t) and dotted curves correspond [w?| and |w?|, respectively. Full
and dashed horizontal lines correspond to the analytical approxima-
(i=1,...N), (5) tion for the average value ¢fv| for N=10 andN— o, respectively.
2 — 2 1 2 . . .
wi(t+1)=w(t)+ 7O[ —sy(t+1)si(t+1)] recall thatS(x) is the sign function. The scalar produat
X2(t+1)s2(t) (i=1,...N). -sis defined in the usual way, cf. E(l). Note that Eq(8)

holds for both perceptrons.

The phase space corresponding to this mapping is discrete. Let us now consider for a moment that, in E@), the
In fact, the inputss™? can adopt the two values 1 only. ~ Vectorsis independent of time. Under this assumption it is

Moreover,w?2 can have real values but they vary on a dis-POSSiPle to reduce the syste®) to tw02 equations for the
crete set, since according to E¢8) and (4) the variation of ~ duantitiesp(t) =s-w(t) andq(t) =|w(t)[*, namely,
the synaptic weights has always the same mod{iime;}?

= 7. Once the initial synaptic weights have been fixed, the p(t+1)=p(t)—(1-n)p(t)],
discrete set of their possible future values is completely de- 9
termined. at+1)=q(t) = 27|p(H)|+ n(1- 7).

During the evolution, the synaptic weights can in prin-
ciple run over an infinite set. However, though the synaptic , i ,
weights are not expected to converge to fixed values but t§ ¢&n be easily seen from the first equation thét) con-
continuously evolve as the game proceeds, it is reasonable Y§r9€S, after a certain transient, to a period-2 cycle. The two
conjecture that they will not perform arbitrarily long excur- V&lues ofp on this cycle,p, andp,, satisfy the relatiorp,
sions in phase space. To prove this conjecture, let us cor= Pr— 1+ 7. They depend on the initial conditions, but are
sider in detail the evolution of the synaptic weights, given by&lways restricted to the intervals<(p;<1-7 and 7—1
the two last equations in E¢g) or, equivalently, by Eqs(3) <p,<0. Accordingly,q(t) oscillates between two values

and(4). These two equations can be written, respectively, a§"d 0z, defined by the initial conditions and related gy
=q,—27p1+ n(1— 7). After the transient, the modulus of

wi(t+1)=wk(t)— pat(t)si(t) if o} (t)=cX(1), the vectomw is therefore restricted to vary within the interval
) ) _ ©  [—W.W] with W=max\/qy, o}
wi(t+1)=wi(t) if ol(t)=—0o?(1), In summary, for fixeds the evolution given by Eq(8)
drives the synaptic weights toward a bounded domain whose
and size depends on the initial condition but remains always fi-
2 N YR R e 1 2 nite. We stress that this is valid for any choicesofComing
wi(t+ 1) =wi(t) = o (t)si(t) if o (t)==o(V), now back to the case of variable inputs, we note that the
@) number of possible values fa(t) is also finite, and equals
2N, Equation(8) can therefore be thought of as the applica-

We now select one of the perceptrons and restrict the dynan%'—on’ at each time step, of one of th€ fransformations just

ics of its synaptic weights to the time steps where they arétu_diﬁd' Since deactr: of Lhedm co_ntract?t thehspace O.f synaptic
effectively modified, by simply ignoring the steps where noWeights toward a bounded region, after the transie(t)

changes occur. The evolution equations can be written in?” alway.s evolve_ within the union of all those r_egior)s.
vectorial form as isregarding transient effects, the space of synaptic weights

is then finite. Hence, the accessible phase space of mapping
w(t+1)=w(t)— S w(t)-s(t)]s(t), (8) (5 is finite and discrete.
As an illustration of the evolution of synaptic weights, we
where the components @f ands are the synaptic weights show in Fig. 2 the time dependence|ef| for both percep-
and the inputs of the selected perceptron, respectively. Wions. The initial weights were uniformly chosen at random

WX (t+1)=w2(t) if oX(t)=o?(1).
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10> rence of periods longer than our numerical realizations.
Some test realizations fod= 10 suggest that periods could
10" grow beyond 19 steps.
The system thus seems to have two well-differentiated
2, time scales. On the one hand, there should be a time scale
5 107 associated with learning, of ordli?. As stated above, in the
Iy case of a single perceptron being trained to predict a periodic
%0 105 o series this is in fact the number of steps needed to compute
o all the synaptic weights. For the competing perceptrons, the
=] length of the initial transient during which the system ex-
10 . . . o
plores phase space to find the bounded region where it will
. evolve later, should be of the same order. On the other hand,
107 ; 7 ) T : z 2 we have a much longer “recursion” time scale, of ordét

(A=~5.05, Fig. 3, associated with the periods of orbits inside
N that region. Though the two-perceptron dynamics is dissipa-
FIG. 3. Average periods of the orbits of mappi, for differ-  tive, it resembles in this aspect that of Hamiltonian systems
ent values oiN. Notice the logarithmic scale in the vertical axis. With many degrees of freedom. Indeed, according to

Poincaré theorem[17], Hamiltonian systems are recurrent

in (—0.2,0.2) andN=10. The horizontal lines in the plot and, at sufficiently long times, they visit an arbitrarily small

stand for the theoretical values of the temporal average dreighborhood of their initial state. However, in a statistical
|w| for N=10 (full line) andN— = (dashed ling These can description of their evolution, it is possible to identify much
be calculated by taking the square of E8), namely shorter time scales, related to the relaxation of fast variables

[18].
- At the level of recursion time scales, the dynamics of the
q(t+1)=a(t)—27va(t)|w(t)-s(t)[+ 7(1-7), (100  two-perceptron system is in a sense trivial. Orbits are in fact
periodic at long times, and the results of successive game

with w=w/|w|. This recursion equation is analogous to thefounds will be repeateed infinitum When, during a whole
second of Egs(9). It can be seen that, for sufficiently large Period, one of the perceptrons is able to gain even the small-
~ . . est advantage over the other, this small difference will con-
N, the average ofw(t)-s(t)| over time—or, equivalently, : . .
Y A tinuously accumulate, producing, in the long run, an arbi-
over random realizations of the vectossand s—becomes  yayily |arge bias in the result of the game. As in the case of
independent oN and approaches the lim{{w-s)=+2/m  large Hamiltonian systems, however, recursion times are far
~0.798. From Eq(10), this implies that for largé\: beyond the reach of oinumerica) experience as the size of
the perceptrons increases. Therefore, most of the realizations
p of the two-perceptron game analyzed below will always be
(w|y=(q)= \@%0.627, (1)  restricted to the interval period, previous to the appearance of
periodicity. In this stage, the relevant time scale is the learn-
ing time, of ordemN®. Within such times we expect the sys-
cf. [16]. A better approximation for finiteN is (Jw|])  tem to reach a kind of stationary playing regime where, if the
=JnN(N—-1)/8(N+1)>. For N=10 this gives (jw|) learning algorithm is efficient, the outputs of the two percep-
~0.540, which is the value plotted in Fig. 2. The averagetrons should imitate a random series®ofl.. In the next sec-
value of|w| provides an estimate for the size of the domaintion, we study the statistical properties of these output series.
of phase space where the synaptic weights evolve after tran-
sients have elapsed. Note that the fact {ha{) approaches
a constant for larg®\ implies that, in average, the synaptic V. STATISTICAL ANALYSIS OF THE GAME DYNAMICS

weights arew?~ 1/y/N. Rand fes in i . be characterized i
The main byproduct of the fact that, for our system, phase . andom properties in imé Series can be characterizedin a
ariety of ways. In our case, where the relevant series are

space is finite and discrete is that, after the transient ha¥ . X . ;
rays of+ 1, a suitable measure of time correlations is an

elapsed, the orbits are periodic. It becomes therefore relevafil L . . ;
to cljaetermine the Iengthp of the periods. In fact, if it resulted'nformatlonllke quantity 19]. As shown below, this quantity

that orbits get typically trapped in short cycles, the problemcan be used to characterize the correlation between different

would at once get uninteresting. We have measured the pé_eries and, consequently, the correlation of a series with it-

riods numerically, carrying out extensive series of 100—100¢¢!" It has the advantage of being additive, and is therefore
realizations 6.4 1C° steps long, withN ranging from 2 to appropriate when comparing numerical results. We thus be-

10. Initial conditions were chosen at random, with the syn—gin by d_efining the_ mutuall informatio_n of two time series.
aptic weights uniformly distributed in<€0.2,0.2). The sys- h (t_“,ontS|derht\t/_vo dlc;hotom|c SSOCT%?“C plﬁ)gses%sandts_z
tem has always been found to reach a periodic orbitNor at, at each time step, can adopt the vaineswith certain
<7. For a fixed value oN, periods show typically a broad probability distributions. LeP(S;,S,) be the joint probabil-

distribution. The average period has been found to incready for the processes,. and.D?(Sl)=Eszl'3(Sl,Sz) and
exponentially withN, as shown in Fig. 3. FON=7, not all  P2(S;)=2s P(S;,S;) their individual(marginal[20]) prob-
the realizations displayed periodicity, indicating the occur-abilities. A measure of the correlation between the two pro-
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cesses is given by thautual information[19], defined as

) P(S1.S))
=2, 2, PSS s s s

It can be shown that=0. For two uncorrelated processes,
where P(S;,S,)=P1(S)P,(S,), the mutual information
reaches its minimum,=0. The maximal value of the mutual
information is obtained fo5,=S, and forS;=—S,, where
|=—P4(+1)log,Pi(+1)
—Pi(=1)log,P1(—1). In particular, if Py(+1)=P4(—1)
=1/2, we getl=1.

The definition of mutual information, Eq12), suggests

. (12

immediately a way of introducing a measure of autocorrela-

tion for a single dichotomic stochastic procesat different
times. In fact, associatin®;(t) and S,(t) with S(t) and
S(t+ 7), respectively, we can introduce tksvo-time) auto-
informationas

I(t,)=2, > P[S(1),S(t+7)]
S(t) S(t+17)
P[S(t),S(t+7)]

*10%| Brst T[S+ )

(13

If Sis a stationary stochastic procd®8], the autoinforma-
tion depends on the time interval only, I=I(7). If the
successive values 08 are uncorrelated we have=0,
whereas for =0 we get the maximal valuel(t,0)
=—P(+1)log,P(+1)—P(—1)log,P(—1).

In practice, for a finite realization of the stochastic pro-

cesses, the probabilities involved in Eq$2) and (13) are
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FIG. 4. Average autoinformation for the output of one of the
competing perceptrons as a function of the time intemamea-
sured in series of T0steps. Both perceptrons have 10 inputs. The
horizontal line corresponds to the average autoinformation expected
for an uncorrelated series of the same length.

nonstationary transient effects during the first stage of learn-
ing (of orderN? [13]). The recorded series afle= 10* steps
long, and the results presented below correspond to averages
over 5x 10" realizations.

Figure 4 shows the measured average autoinformation as
a function of7. The horizontal line corresponds to the aver-
age autoinformatioi(15) expected for an uncorrelated series
with the present value of, i.e., (1)~7.2x10 °. We first
note that, except for=2 and 4, the autoinformation of the
output signal is always less than twice the valuéloffor a
random series. This implies that each perceptron exhibits a
quite good performance in generating a random sequence.

approximated by the corresponding frequencies, which camhere are however, certain regular patterns that suggest the
be computed by simple counting of the relevant occurrencespresence of small but nontrivial correlations. Indeed, the av-
This approximation implies that in the case of uncorrelatederage autoinformation oscillates strongly for smalreach-

processes the information calculated from E4®) and(13)

ing high levels for even values af and dropping abruptly

can differ from zero, due to fluctuations in the finite samplefor odd values ofr. On average, these oscillations decrease

under consideration. It can be shown that fof-atep real-

as 7 grows, but they reappear near20 and 30. Realiza-

ization of uncorrelated stochastic processes where the indjjons for other values oN indicate that the oscillation am-

vidual probabilities of the two possible valuesl are equal,
P(+1)=P(—1)=1/2, the probability distribution for this
apparent information to have a valués

[TIn2
pr(l)= o exp—TlIn2),

(14

for smalll. The resulting mean value of the apparent infor-

mation is

® 1
<|>:fo|pT(|)d|=m, (15

which decreases & ! as the series size grows. For laffe

plitude decreases &sgrows, and that the “bursts” at which
oscillations reappear occur whenapproaches integer mul-
tiples of N. The amplitude of these bursts decreases for larger
multiples.

A more detailed description of the appearance of correla-
tions in the output signals of the perceptrons is provided by
the distribution of autoinformation values. Figure 5 displays
the normalized frequencies of autoinformation values result-
ing from our sets of X 10* realizations of 1-step series for
various values ofr. The curve corresponds tor(l) for an
uncorrelated series, E¢L4). For =1 practically no corre-
lations are detected by the autoinformation. We note only a
slight overpopulation for largé. On the other hand, for
=2, which corresponds to the largest deviation in the aver-

pr(1)—&(1), as expected. Thus, the distribution of valuesage autoinformatiorisee Fig. 4, the distribution is qualita-

for the information computed from finite samples of size
and its average are to be respectively compared i)
and(l) in order to detect the presence of correlations.
We now consider two playing perceptrons with= 10,
and apply the definition of autoinformati@f3) to any of the
two series of outputsS(t)=o14t). The outputs are re-

tively different. It exhibits a maximum at a rather large value
of the autoinformation I(=2x 10 %) and, except for small
values ofl, it is systematically much larger than the distri-
bution expected for a random series. At 10, the distribu-
tion has a profile similar to that observed fer=1, but the
overpopulation at the tail is noticeably larger. This overpopu-

corded after the first Z0steps have elapsed, in order to avoid lation grows further during the bursts where oscillations re-
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frequency

FIG. 5. Normalized frequencies of autoinfor-
mation values obtained from»610* series of 16
steps, for several values of the time interval

0 2x10*  4x10°  6x10®  8x10* g
10 Both perceptrons have 10 inputs. Curves corre-
e, =2 spond to the distribution expected for uncorre-
lated series of the same length, Ef4).
Q .
=1 L)
[=a 3
&
10 : T T T ! 10 T . T T
0 1x10°  2x10°  3x10°  4x10° sx10” O 210 ax10*  6x10®  sx10*  1x10°
autoinformation autoinformation

appear. The plot for=20 shows the distribution at the first Numerical measurements of the right-hand sidé.s) of

of these bursts. In contrast, for the intermediate values ahis equation show that the first two terms in the argument of

which the average autoinformation plotted in Fig. 4 reacheshe sign function have zero mean and do not produce a net

the information of a random series, the corresponding distrieontribution to the sign o&r(t) o(t+2). The only contribu-

bution cannot be distinguished frop(1). tion to the correlation is originated in the third term. To
We have found that the oscillations of the average autoverify this fact analytically, we first note that

information shown in Fig. 4 are essentially a byproduct of

the internal dynamics of each perceptron. In fact, if instead w(t+1)=w(t)[1+ O(l/\/ﬁ)],
of using the opponent’s output, a perceptron is fed with a (18)
random series of- 1, the autoinformation of its own output s(t+l)-s(t+2)=s(t)~s(t+l)[1+O(l/\/N)].

oscillates as well. A detailed analysis of the output series

reveals that, for ever, the producto(t)o(t+7) is more  rhe first of these identities results from the fact that, as
frequen'tly negative Fhan positive. For instance, fer2, the shown in the previous sectiow;~ 1/\/N whereas, according
respective frquenmes are qbout_0.52 and 0.48. We remark Eq. (5), its variation in one time step is given by
passing that this small relative difference—of the order of a_ 1/N. The second identity can be readily proven from the

few p(_arcent_—produce_s an incr_ement I_arger_than one order %fvolution ofs;(t), also given in Eq(5). Consequently, ne-
magnitude in the autoinformation, which evidences the sen-, " . e ; '

o9 . ; . glecting terms of order 1N, the sign of the product
sibility of this quantity as a measure of correlations. For

larger values ofr, the difference is even smaller. On the U(t)(_T(Hl)S(Hl)'S(HZ) can be approximated as fol-

other hand, for odd- no differences are detected. lows
In order to trace the origin of the correlations observed for
evenr, a careful analysis of the learning algorithm has to be So®o(t+1)st+1)-st+2)]
carried out. We consider first the case ©f 2. After two ~S{[w(t)-s(t)][w(t)-s(t+1)][s(t)-s(t+1)]}. (19
time steps, the vector of synaptic weights can be written as
Note that the argument of the sign function in the r.h.s. of

w(t+2)=w(t)— nd(t)o(t)s(t) this equation is likely to be positive, since it is given by the
product of the projections of two vectorg(t) ands(t+1),
—70(t+ Do(t+1)s(t+1), (16) along the direction ofv(t) times their mutual scalar product.

More explicitly,
where 6(t) =1 if the weights have been modified at tihe
and #(t) =0 otherwis€cf. Eq. (8)]. When the perceptron is  [w(t)-s(t)][w(t)-s(t+1)][s(t)-s(t+1)]
fed with a random signalg(t) can be seen as a stochastic 5 ) ,
process with equal probabilities for its two values. The prod- =sy(t)sy(t+1)+s,(t)s,(t+1)s'(t)-s'(t+1), (20

uct of the outputs two steps apart is R
with s, =w-s ands’ =s—s,w. The first term in the r.h.s. of

c()o(t+2)= () [W(t+2) (t+2)] this equation is always positive, whereas the second term is
not expected to have a definite sign on average. Note more-
=Y o(t)w(t) - s(t+2)—7b(t)s(t)-s(t+2) over that the first term is of the order of unity, whereas the

B second term is of ordet/N. This implies that the relative
76(t+ Do(ho(t+1)st+1)-st+2)]. importance of the positive contribution decreases Nas
(17) grows. Coming now back to Eq17) through Eq.(19) it is
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clear that, when the synaptic weights are modified at ime gorithm with which each player is endowed to outguess its
+1[i.e., (t+1)=1], there is on average a negative contri- opponent. Remaining correlations, which could in principle
bution too(t) o(t+2), in agreement with numerical results. be exploited by a “smarter” opponent to obtain a net gain
According to the above analysis, this correlation should beduring the game, are small overall and can in fact be reduced
come less important ds grows. In fact, the autoinformation systematically by increasing the memory range.
peak atr=2 is observed to decrease in the simulations.
For arbitrary 7, the analysis can be repeatedutatis
mutandis We have V. DISCUSSION
! We have here considered an example of a fully determin-
o(t)o(t+7)=3 a(t)w(t) s(t+7)— 772 o(t+t")o(t) istic learning system and explored its ability to behave sto-
r=0 chastically. Concretely, we have coupled two deterministic
perceptrons in such a way that they imitate two players of the
Xo(t+t')s(t+t')-s(t+7)|. (21) game of matching pennies, trying to outguess each other.
Since the optimal strategy for this game is a purely stochastic
sequence of outputs, the learning process should lead the

Taking now into account that network dynamics to approach a random signal.
, - In the first place, we have observed that a perceptron pro-
w(t+t)=w()[1+O(t'/N)], ducing a periodic signal can always be defeated by a suffi-
(22) ciently “smart” opponent, i.e., by a perceptron with a suffi-
s(t+t')-s(t+7)=8(t) - s(t+7—t")[1+ O(Jt'/N)], ciently large number of neurons. This kind of “dummy”

) , ) . player provides in fact a linearly separable set of examples
the sign of the produatr(t)o(t+1t")s(t+1") s(t+7) inthe ¢4 the |earning of its opponeiig]. The learning task is thus
sum of Eq.(21) can be approximately written as to find a plane in the input space that separates the input
, , states into two groups, namely, those whose expected out-
LoOo(t+)st+t)-t+7)] puts are either-1 or —1. On the other hand, when the two

~S{[w(t)-s(t)][w(t)-s(t+t")][s(t)-s(t+7—t")]}. competing perceptrons are allowed to learn, the situation is
23 pretty much different. Since both networks are looking for
the best performance, they both change their strategies online
The argument of the sign function in the r.h.s. of this equa@nd; thus, they may well provide not only a nonlinearly sepa-
tion has a positive contribution of the same type as in Eq_rable set of examples_, but also an inconsistent one. That is to
(19) whent+t'=t+r—t’, i.e. for =2t’. Therefore, in the Say, at two different times any perceptron can give two dif-
realizations wherg(t+ 7/2)=1, a negative contribution to ferent outputs from the same input state. This is the reason
a(t)o(t+7) appears. This of course requirego be even. Why the learning process does, in fact, not converge, and
Since other contributions have no definite sign, peaks in th&hy the system is expected to spontaneously develop sto-
average autoinformation are expected for even values of chasticlike dynamics.
as observed. Note moreover that the ordéf/N of the Despite the fact that the overall dynamics is in the long
terms neglected in Eq23) increases witht’, i.e., with 7. run periodic and, consequently, the characteristic randomlike
This explains why the height of the peaks decreases as evolution of chaotic systems cannot be found H&®, the
grows. perceptrons do learn to behave quasistochastically over mod-
Along the same line of analysis, it is possible to explainerately long time intervals. An information-theoretical statis-
the bursts where the autoinformation peaks reappear. Nowical analysis of the output signals shows slight time correla-
however, it is necessary to take into account both percepions, to be ascribed to the deterministic coupling between
trons. In fact, the output of a single perceptron fed with athe learning mechanism and the outputs themselves, which
random signal does not exhibit such bursts. They are ratheract as the inputs of the respective opponents. The effect of
consequence of the interaction between the two perceptrorieese correlations is observed to decrease gradually as the
during the game. The analysis, whose details we omit hereyumber of neurons in each perceptron grows. Two seemingly
shows that bursts are originated by a kind of bouncing effecparadoxical aspects of this learning process deserve to be
in the transmission of information between the opponentspointed out, because of their suggestive similarity with learn-
This bouncing effect is attenuated agrows, and decreases ing in humans(or other animalsentrained in a systematic
for larger perceptrons, as observed in the numerical simulaactivity such as a repetitive competition game. In the first
tions. place, the mutual search for regularity in the opponent’s be-
In summary, the statistical analysis of perceptron outputhavior leads the whole system to develop highly irregular
at time scales larger than the learning stage but much shortewolution over long times, which can hardly be distinguished
than the recursion times, reveals that the perceptrons afeom purely random dynamics. In the second place, we stress
quite efficient players of the game of matching pennies. Eveithat competition can here be interpreted as a form of mutu-
with a relatively small number of inputs, i.e., with a rela- ally supervised learning and, thus, results in a kind of col-
tively short-range memory, their dynamics is able to generaté&boration between the opponents.
guasirandom mixed strategies. We recall that this behavior Some natural extensions of the present model are worth
originates spontaneously from the deterministic learning aleonsidering for future work. An important question to be
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addressed regards the case where the entangled perceptroestures. Fully connected networks and multilayer structures
are not equal in size, i.e., they have different numbers ohave been shown to exhibit very high performance in learn-
neurons. In such a situation, in fact, the above quoted corrang tasks[2,3,19. It would therefore be interesting to study
spondence of competition and collaboration could fail tohow these more complex networks respond to mutually su-
hold. Preliminary results along this lirfaot presented in this pervised learning. Finally, from the viewpoint of game
papej suggest however that the advantage of a larger peitheory, it would be relevant to analyze the dynamics of com-
ceptron is relatively small. Only very small networkBl ( peting networks engaged in other games, especially, when
~2) are systematically defeated by larger opponents, as theydinary optimization procedures do not lead to the optimal
typically fall in short-period cyclic orbits. Another important playing strategy. We mention, in particular, the iterated pris-
extension, which deserves separate consideration, consistsaier’s dilemma22], which is attracting a great deal of at-
adding noise to the deterministic dynamics studied here. Itention as a paradigm of competition-collaboration interplay,
fact, errors in information transmission and in memory re-and multiplayer minority games, recently studied by means
trieval are extremely relevant factors in the emergence obf ensembles of globally coupled perceptr¢@8]. Compet-

strategies as a game proce¢ag].

ing neural networks could contribute to a better understand-

The perceptronlike structure of our networks is probablying of the complex learning mechanisms involved in such
the simplest instance among a large class of possible archikinds of social interactions.
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